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Learning and generation of long-range correlated sequences

A. Priel* and I. Kanter
Minerva Center and Department of Physics, Bar-Ilan University, 52900 Ramat-Gan, Israel

~Received 11 January 2000!

We study the capability to learn and to generate long-range, power-law correlated sequences by a fully
connected asymmetric network. The focus is set on the ability of neural networks to extract statistical features
from a sequence. We demonstrate that the average power-law behavior is learnable, namely, the sequence
generated by the trained network obeys the same statistical behavior. The interplay between a correlated weight
matrix and the sequence generated by such a network is explored. A weight matrix with a power-law corre-
lation function along the vertical direction, gives rise to a sequence with a similar statistical behavior.

PACS number~s!: 84.35.1i, 05.10.2a
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I. INTRODUCTION

Real-life ~temporal! sequences are characterized by a c
tain degree of correlation. It is known that a wide range
systems in nature displays long-range correlations, e
biological-DNA sequences and heartbeat intervals, nat
languages, etc., see Refs.@1,2#. Since long-range correlation
can appear in many forms, we restrict the analysis to the c
of power-law correlations in a random sequence, e.g.,
correlation function for a 1D sequencexi is given by

C~ l !5^xixi 1 l&} l 2g ~ l→`, g.0!, ~1!

where the angular brackets denote an average over the
domness. This type of random sequence is also termed ‘‘
ored’’ or correlated-noise. The general form of descripti
allows us to investigate the capability of the network to ca
ture statistical properties of a sequence.

The theory of learning from examples by a neural n
work, and in particular online learning, has been develo
almost exclusively for uncorrelated patterns, see Refs.@3,4#.
Though some particular cases of correlated patterns w
treated, they were limited to simple spatial correlatio
within each pattern, or to temporal correlations of each in
unit, e.g., Ref.@5#. The case of long-range correlations
absent. Clearly, the problem of extracting a feature from
correlated sequence whose length is much larger than
network’s size, cannot be treated under the same assu
tions. Rather than dealing with the question of the gener
zation error~average over a distribution of patterns!, we fo-
cus on the capability of the network to asymptotica
capture the correlations within the sequence and its abilit
generate a sequence with similar properties.

As shown previously, the sequence generator~SGen!, a
continuous-valued feed-forward network in which the ne
state vector is determined from past output values, exhi
~quasi! periodic attractors in the stable regime, regardless
the complexity of the weights, both in the case of a perc
tron as well as multilayer SGen’s, e.g., Refs.@6–8#; the un-
stable, chaotic regime is studied in Ref.@9#. Therefore, it is
obvious that the perceptron-SGen, or its extension
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multilayer networks, are not suitable candidates for learn
and generating correlated noise. The natural way to ov
come this limitation is to increase the complexity of the fee
back in the architecture. In this paper we study a fully co
nected, asymmetric network. The updating rule for t
network’s state is either sequential or parallel, namely, e
unit is updated on its turn or all units are updated simu
neously. Uniti ( i 51, . . . ,N) is updated as follows:

Si
t115tanhS bF (

j 51

i 21

Wi j Sj
t111(

j 5 i

N

Wi j Sj
t G D , ~2!

Si
t115tanhS b(

j 51

N

Wi j Sj
t D , ~3!

where Eqs.~2!,~3! refers to the sequential~parallel! rule; W
is an @N3N# weight matrix andb is a gain parameter. The
network generates iteratively an infinite sequence$sm% start-
ing from an initial stateS0 as follows:

sm5Si
t11 , m5tN1 i 51,2, . . . , ~4!

wherei 51, . . . ,N, t50,1,2 . . . .
Two complementary issues are discussed in this paper~a!

Given a training sequence characterized by long-range
relations, can we train a network in an online scheme
generate a sequence with the same asymptotic statis
properties?~b! The inverse problem, is there an interpla
between a network whose weight matrix follows a pow
law correlation function, and the sequence it generates?
important to stress that the model we investigate is not p
posed as a practical method for generating long-range co
lated sequences, rather, it is motivated by the issues ra
above.

In the next section we investigate the first question.
‘‘online,’’ gradient-based learning rule is applied where ea
example is presented to the network only once. The
quences that constitute the basis for the training patterns
the correlated weight matrices, are generated using an a
rithm for re-shaping the power spectrum of an uncorrela
sequence; the method has been developed for investiga
various stochastic processes, see Ref.@10#. In Sec. III the
inverse problem is analyzed. A method for constructing
1617 ©2000 The American Physical Society
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1618 PRE 62A. PRIEL AND I. KANTER
weight matrix is presented based on the findings obtai
from Sec. II regarding the correlation properties of t
weights in trained networks. A simple analytical derivati
support these findings.

II. GENERALIZING THE RULE OF A COLORED
SEQUENCE

Suppose a source generating sequences that obey Eq~1!;
the question we address in this section focuses on the p
bility of learning the statistical properties of the source, a
in particular the exponentg of the power-law correlation
function. For a network defined by its weightsW, a gainb
and a nonlinear functionf, the response of thei th unit, given
the current statej t, is

Si
t115 f ~j t,W i !,

whereW i denotes the vector of weights connected to theith
unit. The online learning algorithm minimizes a quadra
error function

e i~j t,W i !5@Si
t112t i

t11#2/2, ~5!

wheret i
t11 is the desired response of thei th unit given the

statej t. The weights are updated according to

W i
t115W i

t2
h

N
¹We i~j t,W i

t!, ~6!

i.e., a gradient descent rule with a learning rateh ~similar
results were obtained using the Hebbian learning rule!.

The training patterns are defined as follows. LetDL
5$x1 ,x2 , . . . ,xL% be a 1D sequence obeying Eq.~1!. A
training pattern @the pair (j m,t i

m) 0,m<L22N11, i
51, . . . ,N# is defined by

j m5~xm ,xm11 , . . . ,xm1N21!,
~7!

t i
m5xm1N1 i 21 ,

where each weight vectorW i is updated with the corre
sponding desired outputt i

m , and the same vectorj m. Updat-
ing all N weight vectors for a given pattern (j m,t i

m i
51, . . . ,N), accounts for a single training cycle. The pa
terns for consecutive training cycles are achieved via slid
a window of sizeN by one site along the sequenceDL ; e.g.,
given a current pattern starting at sitem along the training
sequence, j m @Eq. ~7!#, the next pattern is j m11

5(xm11 ,xm12 , . . . ,xm1N). The training patterns can be ob
tained in a different scheme by sliding the windowN sites
~nonoverlapping windows!; i.e.,

j m115~xmN11 ,xmN12 , . . . ,xmN1N!,
~8!

t i
m115x(m11)N1 i , m50,1, . . . .

Results obtained in both schemes are similar, however,
length of the sequence (DL) used in the second scheme~to
obtain the same results! is aboutN times larger.

Let us now describe our numerical investigation. An e
semble of long sequences,DL ~of sizeL@N), that obey Eq.
~1! with a giveng is generated. A randomly chosen netwo
is trained using a part of the sequence. Taking the last pa
d

si-
d

g

he

-

rn

from the training process as an initial state, the trained n
work is used to generate iteratively a long sequence$sm%, of
sizeMN with M510, following the sequential rule, Eqs.~2!
and ~4!. The correlation function of this sequence can
calculated in the two following ways: spatial and tempor
The spatial correlation is obtained by averaging the corre
tion function, calculated on~M! sequences of sizeN after
updating all~N! units, over theM iteration cycles, whereas
the temporal correlation is simply the correlation function
the long sequence, i.e.,

Cspat~ l !51/M (
j 50

M21 F1/N(
i 51

N

s jN1 is jN1( i 1 l modN)G ,

~9!

Ctemp~ l !5~MN!21(
i 51

MN

s is i 1 l ,

where we take periodic boundary conditions. Next, the sa
weight matrix is further trained and after eachaN patterns
(a510), the same process of ‘‘generating a sequence
calculating its correlation function,’’ is repeated for a bett
statistical estimation. We found that both definitions of t
correlation function yield similar results, therefore, in th
sequel we omit the subscript from Eq.~9! and refer to the
temporal correlation function

C~ l !5Ctemp~ l !. ~10!

Note that the range of correlations is bounded by the num
of degrees of freedom$Si% i 51

N , as in Ref.@10#; therefore, the
correlation function is calculated in the range 0, l ,N/2 ~a
symmetric function!. The whole procedure is applied for a
members of the ensemble. This extensive averaging is
essary since the patternsj m taken from the long sequence
DL , exhibit large fluctuations~recall thatN!L and the vari-
ance decreases linearly with the size of the sequence!.

Figure 1 depicts the results of the above procedure fog
50.4,0.6,0.8 (N5200), with L'105 and an ensemble o

FIG. 1. The correlation functionC( l ) @Eq. ~10!# of the se-
quences generated by the trained networks withN5200. The train-
ing patterns are generated from correlated 1D sequences wig
50.4,0.6,0.8.C( l ) is shown along with the power-law regressio
lines; the respective exponents are 0.42, 0.63, 0.76. The op
triangle points correspond to training by slidingN sites each cycle,
and the exponent of the regression line is 0.7~for g50.8).
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PRE 62 1619LEARNING AND GENERATION OF LONG-RANGE . . .
50–100 samples. For comparison, we show the result
training with patterns obtained by sliding the windowN sites
each cycle@nonoverlapping windows, Eq.~8!#; in this case,
the sequence is much larger,L'107. The data points are th
average values with relative error-bars that vary from 5%
small l to 40% ~less than 20% for nonoverlapping window!
of the data point forl'N/2, hence, we omit them to preserv
the clarity of the figure. The learning rate used,h52 @Eq.
~6!#, is not optimal; it is obvious that an optimization ca
reduce the fluctuations in the correlation function since
affects the relative change in the weights. We note that
fluctuations inspected in the sequences$sm% generated by
the trained networks are similar to those of the training p
terns j, indicating a finite size effect. This has been co
firmed for several network sizes.

It is interesting to examine how the network~learning
algorithm! has embedded the relevant information associa
with the correlations. At the end of the training process
scribed above, we measured the correlation function of
weight vectors~averaged over realizations ofDL) in two
directions, horizontal~over rows! and vertical ~over col-
umns!, as follows:

Ch~ l !5K (
i , j 51

N

Wi , jWi , j 1 l modNL , horizontal,

~11!

Cv~ l !5K (
i , j 51

N

Wi , jWi 1 l modN, j L , vertical.

Results are presented in Fig. 2 for a training sequence o
ing a power-law correlation function with exponentg50.6
and a network of sizeN5300. Clearly, the vertical correla
tions follow a rule similar to that of the sequence,Cv( l )
; l 20.625, while the horizontal correlations decay muc
faster, with an exponential fitCh( l );exp(20.03 l ). The
case of training with patterns obtained from nonoverlapp
windows is presented for comparison by the opaque circ
In this case, the vertical correlations are similar,Cv( l )
; l 20.61, however, there are no horizontal correlations. W

FIG. 2. The correlation functions of the weightsW of trained
networks withN5300. Ch(v) is averaged over the rows~columns!
of the weight matrix@Eq. ~11!#. The dashed lines correspond
regression fits: a power-lawCv( l ); l 20.62560.016, and exponential
Ch( l );exp(2al) a520.0360.001. The opaque circles represe
Cv in the case of training by slidingN sites each cycle for a networ
with N5200. The power-law regression fit isCv( l ); l 20.6160.025.
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conclude that sliding one site each cycle induces horizo
correlations, however they decay exponentially fast.

The issue of learning the rule from a teacher is not trea
in this framework, however, we add the following~numeri-
cal! observation: The overlap between two~initially random!
networks,R5W1

•W2, learning from the same rule~training
sequence! decreases with the size of the network~N! and
remains very low even forL@N2, although the two networks
generate sequences with similar correlation functions,
ymptotically. The same holds when each network lea
from a different sequence. We conclude that the netw
indeed learns the statistical properties of the sequence,
not its values. Clearly, in batch learning one expects that
network would learn the rule whenL5N2, since the number
of free parameters~weights! equals the number of example

III. GENERATING COLORED SEQUENCES
BY A COLORED NETWORK

So far, we demonstrated the capability of the network
capture statistical properties from the training sequence.
us now consider the inverse problem, i.e., that of constru
ing a network that is capable of generating correlated
quences. The information obtained from the trained netwo
in the preceding section regarding the structure of the we
matrix, suggests that the significant correlation is present
tween the elements of a column, i.e., vertical directio
Therefore, we would like to compare the correlation functi
of sequences generated by networks with the same ver
correlation function~power law!, and various horizontal de
cay forms, i.e., power law with an increasing exponentg.
The weights are constructed as follows. Start by generatin
random matrix of normally distributed elements. Each c
umn is treated as a 1D sequence and is ‘‘colored’’ followi
the process described above for generating a 1D correl
sequence. After this stage, the rows are still uncorrelated
achieve a different power-law function for the rows, we tre
each row independently as a 1D sequence and follow
same procedure as above, this time with~possibly! a differ-
ent exponent. This process generates a weight matrix w
pronounced correlations in the vertical and horizontal dir
tions only. We normalize the weights( i , j 51

N W( i , j )
2 5N, such

that b5O(1) ~independent ofN). The value ofb in the
dynamic equations, Eqs.~2!,~3!, is taken well above bifurca-
tion to increase the probability of nonperiodic attractors@11#
~we carefully avoid the periodic attractors in our measu
ments!. In the analysis described below, each sample n
work ~coloredW) is initialized at random (S0) and the cor-
relation function of the sequence generated is calculate
long times.

Figure 3 depicts two cases for which the vertical corre
tion function of the weights decays polynomially with exp
nents gv50.4 andgv50.6. For each case, the horizont
correlation function takes one of the following three value
gh5gv , gh52gv or uncorrelated. The results were obtain
for a network of sizeN52048 and averaged over 50 realiz
tions of the weight matrix. Additional averaging is done b
starting from several initial conditions for each matrix. It
apparent that the symmetric case,gh5gv , gives rise to a
relatively poor long-range correlations in the generated
quence. The other two cases exhibit much longer-range
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1620 PRE 62A. PRIEL AND I. KANTER
relations. Although we are not trying to determine the op
mal correlation function, it seems that weak correlations
better than lack of horizontal correlations. This is in agre
ment with our findings regarding the trained networks, s
Fig. 2.

To conclude, we propose a naive calculation wh
should serve as a starting point to the analytical investiga
of the model. The quantity of interest in our calculation is t
asymptotic correlation function

C~ l !5Z^Si
tSi 1 l

t & t,W , ~12!

whereZ is a normalization factor@C(0)51#. The average is
taken over the timet and the realizations of the weight
expectingC( l ) to be independent of the sitei. For simplicity
we use the parallel updating rule, Eq.~3!, hence, the station
ary state of the correlation function may be given by

C~ l !5ZK tanhS b(
j 51

N

Sj
tWi , j D tanhS b(

j 51

N

Sj
tWi 1 l , j D L

t,W

.

~13!

The approximation of Eq.~13! consists of linearizing the
right-hand side and assumingS independent of the realiza
tion of W, leading to

C~ l !' (
j ,k51

N

^Sj
tSk

t & t^Wi , jWi 1 l ,k&W . ~14!

Next, we identify the averages as the correlation functio
defined above, that depend on the distance only, and rew
Eq. ~14! usingm[k2 j in the form

C~ l !5Ẑ (
m51

N

C~m!CW~ l ,m!, ~15!

FIG. 3. The correlation function of sequences generated b
constructed colored network,N52048. ~a! gv50.4, ~b! gv50.6.
gh is given in the figure~‘‘no cor’’ stands for no horizontal corre-
lations!. The solid lines are the power-law regression fits with e
ponents:~a! 0.47 ~top line!, 0.46 ~middle!, and 0.5~bottom!; ~b!
0.64 ~top!, 0.64 ~middle!, and 0.63~bottom!
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whereẐ is a normalization factor,CW( l ,m) denotes the 2D
correlation function of the weights, andC( l ) is the 1D func-
tion which is the quantity of interest. In the scenario d
scribed above,CW is known a priori ~independent of time!
since the weights are constructed. If we assume a power
vertical correlations forCW and no horizontal correlations
the correlation function of the sequenceC( l ), simply follows
the vertical correlations of the weights, i.e.,C( l )

5Ẑ(mCW( l ,m)dm,05ẐCW( l ,0), supporting the above find
ings. We remark that this decomposition ofCW into indepen-
dent vertical and horizontal functions is still a good appro
mation whenCh is not a delta function, as long asCh decays
much faster thanCv , which enables us to neglect other co
relations. In this case Eq.~15! can be formulated as an ‘‘ei
genvalue problem’’ of the matrixCW . Few such cases hav
been solved numerically for which the assumption of deco
position was found consistent, see Ref.@12#. When this de-
composition is no longer valid, we observe a breakdown
the long-range power-law behavior, see Fig. 3—the casegh

5gv .

IV. DISCUSSION

In this paper we analyzed the capability of a neural n
work model to learn the rule of a long-range correlated
quence on the one hand, and a method for constructin
network that is able to generate such sequences on the
hand. We demonstrated that a simple online learning a
rithm can be used to extract the rule, provided that the
quence is long enough. The fluctuations observed in
training patterns are manifested in the generated seque
as well. The investigation of the weights that were obtain
during the learning process indicates that the vertical co
lations @Cv , Eq. ~11!# play the most important role in gen
erating correlated sequences by the network. Employing
finding, we were able to construct networks~without train-
ing! that are capable of generating sequences with a
defined power-law correlation function. Indeed, we fou
that additional significant horizontal correlations in the co
structed networks’ weights corrupt this property. These
servations were confirmed by a naive analytical treatmen
the stationary correlation function.

The question of the optimal learning rate (h) was not
treated although it seems to be an important parameter in
convergence of the training process. Another question wh
deserves further research regards the analytical derivatio
the correlation function. Taking into account the nonlinear
of the transfer function is necessary to close the naive ca
lation self-consistently, and to obtain the corrections to
correlation function.
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