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Learning and generation of long-range correlated sequences
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We study the capability to learn and to generate long-range, power-law correlated sequences by a fully
connected asymmetric network. The focus is set on the ability of neural networks to extract statistical features
from a sequence. We demonstrate that the average power-law behavior is learnable, namely, the sequence
generated by the trained network obeys the same statistical behavior. The interplay between a correlated weight
matrix and the sequence generated by such a network is explored. A weight matrix with a power-law corre-
lation function along the vertical direction, gives rise to a sequence with a similar statistical behavior.

PACS numbd(s): 84.35+i, 05.10—a

I. INTRODUCTION multilayer networks, are not suitable candidates for learning

and generating correlated noise. The natural way to over-

Real-life (tempora) sequences are characterized by a cercome this limitation is to increase the complexity of the feed-

tain degree of correlation. It is known that a wide range ofback in the architecture. In this paper we study a fully con-

systems in nature displays long-range correlations, e.gnected, asymmetric network. The updating rule for the

biological-DNA sequences and heartbeat intervals, naturaietwork’s state is either sequential or parallel, namely, each

languages, etc., see Reff$,2]. Since long-range correlations unit is updated on its turn or all units are updated simulta-
can appear in many forms, we restrict the analysis to the cageeously. Uniti (i=1,... N) is updated as follows:

of power-law correlations in a random sequence, e.g., the
correlation function for a 1D sequenggeis given by

i1 N
5{*1:tanr(ﬁLZl Wijs}+l+j2:i WijS}Da 2

C(H=(XXi+)l 77 (1=, y>0), (1)
N
where the an_gular brackets denote an average over th? ran- Sf“ztanr( BZ Wijsf), 3)
domness. This type of random sequence is also termed *“col- i=1

ored” or correlated-noise. The general form of description

allows us to investigate the capability of the network to cap-where Eqs(2),(3) refers to the sequentigparalle) rule; W

ture statistical properties of a sequence. is an[ N X N] weight matrix andB is a gain parameter. The
The theory of learning from examples by a neural net-network generates iteratively an infinite sequefieg} start-

work, and in particular online learning, has been developedng from an initial states® as follows:

almost exclusively for uncorrelated patterns, see Ré&fd].

Though some particular cases of correlated patterns were am=S}+1, m=tN+i=1,2,..., 4
treated, they were limited to simple spatial correlations
within each pattern, or to temporal correlations of each inputvherei=1,... N, t=0,1,2 ... .

unit, e.g., Ref.[5]. The case of long-range correlations is  Two complementary issues are discussed in this pager:
absent. Clearly, the problem of extracting a feature from &aGiven a training sequence characterized by long-range cor-
correlated sequence whose length is much larger than thelations, can we train a network in an online scheme to
network’s size, cannot be treated under the same assumgenerate a sequence with the same asymptotic statistical
tions. Rather than dealing with the question of the generaliproperties?(b) The inverse problem, is there an interplay
zation error(average over a distribution of pattefnae fo-  between a network whose weight matrix follows a power-
cus on the capability of the network to asymptotically law correlation function, and the sequence it generates? It is
capture the correlations within the sequence and its ability tdmportant to stress that the model we investigate is not pro-
generate a sequence with similar properties. posed as a practical method for generating long-range corre-
As shown previously, the sequence generaB®Gen, a lated sequences, rather, it is motivated by the issues raised
continuous-valued feed-forward network in which the nextabove.
state vector is determined from past output values, exhibits In the next section we investigate the first question. An
(quas) periodic attractors in the stable regime, regardless ofonline,” gradient-based learning rule is applied where each
the complexity of the weights, both in the case of a percepexample is presented to the network only once. The se-
tron as well as multilayer SGen’s, e.g., Rd®-8]; the un-  quences that constitute the basis for the training patterns and
stable, chaotic regime is studied in REJ]. Therefore, itis the correlated weight matrices, are generated using an algo-
obvious that the perceptron-SGen, or its extension taithm for re-shaping the power spectrum of an uncorrelated
sequence; the method has been developed for investigating
various stochastic processes, see R&f]. In Sec. Il the
*URL: http://faculty.biu.ac.i* priel inverse problem is analyzed. A method for constructing the
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weight matrix is presented based on the findings obtainec  1¢°
from Sec. Il regarding the correlation properties of the 4
weights in trained networks. A simple analytical derivation
support these findings.

Il. GENERALIZING THE RULE OF A COLORED
SEQUENCE

C(l)

>3

-1
Suppose a source generating sequences that obdy)Eq. 10

the question we address in this section focuses on the poss e V=04

- . S : ¥=0.
bility of learning the statistical properties of the source, and *Y=06
in particular the exponeny of the power-law correlation 4y=038
function. For a network defined by its weighté, a gaing .
and a nonlinear functiof) the response of thigh unit, given 10 100
the current staté!, is i

Sit+1=f(§t,Wi), FIG. 1. The correlation functiorC(l) [Eqg. (10)] of the se-

guences generated by the trained networks With200. The train-
whereW; denotes the vector of weights connected toithe ing patterns are generated from correlated 1D sequencesywith
unit. The online learning algorithm minimizes a quadratic=0.4,0.6,0.8.C(l) is shown along with the power-law regression

error function lines; the respective exponents are 0.42, 0.63, 0.76. The opaque
triangle points correspond to training by slidihgsites each cycle,
t _rattl_ _t+1q2
(& \W)=[S —7 "]/2, ©) and the exponent of the regression line is @of y=0.8).
t+1

wherer; "~ is the desired response of thil unit given the

state!. The weights are updated according to from the training process as an initial state, the trained net-

work is used to generate iteratively a long sequedrgg}, of
7 sizeMN with M =10, following the sequential rule, Eq®)
W}“:Wi‘— NVWei(gt,W}), (6) and (4). The correlation function of this sequence can be
calculated in the two following ways: spatial and temporal.
i.e., a gradient descent rule with a learning ratésimilar The spatigl correlation is obtained by averaging the correla-
results were obtained using the Hebbian learning)rule tion function, calculated oriM) sequences of sizBl after
The training patterns are defined as follows. L@t updating all(N) units, over theM iteration cycles, whereas
—{X;,%, ... X} be a 1D sequence obeying E€L). A the temporal correlation is simply the correlation function of
training pattern [the pair ¢™7") O<m<L-2N+1,i thelong sequence, ie.,
=1,... N]is defined by M-1 N
EM= (X X 1s e Xeren1)s Copaf)=1/M JZO 1/N241 TiN+iTN+(i+1 modN) | »

(7 - 9)
ctemF(I):(MN)*l;l o0

m__
Ti =Xm+N+i—1,

where each weight vectoW; is updated with the corre-

sponding desired outpuf", and the same vectar™. Updat- o N
ing all N weight vectors for a given patterns{, 7™ i where we take periodic boundary conditions. Next, the same

=1,... N), accounts for a single training cycle. The pat- weight matrix is further trained and after eaaiN patterns
terns for consecutive training cycles are achieved via slidinéazlo)' the same process of “generating a sequence and

a window of sizeN by one site along the sequerdg ; e.g. calculating its correlation function,” is repeated for a better
given a current pattern starting at sitealong the training statistical estimation. We found that both definitions of the

sequence, ¢™ [Eq. (7)], the next pattern is&m*? correlation fun'ction yield sjmilar results, therefore, in the
= (Xt 1:Xm1 25 - - - Xms ). The training patterns can be ob- sequel we omit t_he subsqupt from E@) and refer to the
tained in a different scheme by sliding the winddwsites ~ t€mporal correlation function

(nonoverlapping windowsi.e.,

C(1)=Cremd!). (10
m+1_
€77 (Xmne 1 Xme 2 - - - X Note that the range of correlations is bounded by the number
Tim+l:X(m+l)N+i . m=0,1,.... ®)  of degrees of freedofS}I. ,, as in Ref[10]; therefore, the

correlation function is calculated in the rangecB<N/2 (a

Results obtained in both schemes are similar, however, theymmetric functioh The whole procedure is applied for all
length of the sequenceD() used in the second scherfte ~ members of the ensemble. This extensive averaging is nec-
obtain the same resultss aboutN times larger. essary since the patterg$’ taken from the long sequences

Let us now describe our numerical investigation. An en-D, , exhibit large fluctuationgrecall thatN<L and the vari-
semble of long sequences, (of sizeL>N), that obey Eq. ance decreases linearly with the size of the seqyence
(1) with a givenvy is generated. A randomly chosen network  Figure 1 depicts the results of the above procedureyfor
is trained using a part of the sequence. Taking the last pattern0.4,0.6,0.8 N=200), with L~10° and an ensemble of
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conclude that sliding one site each cycle induces horizontal
correlations, however they decay exponentially fast.

The issue of learning the rule from a teacher is not treated
in this framework, however, we add the followitigumeri-
cal) observation: The overlap between tgnitially random)
networks,R=W?*.W?, learning from the same rulgraining
sequencedecreases with the size of the netwdi¥) and
remains very low even fdr>N?2, although the two networks
generate sequences with similar correlation functions, as-
ymptotically. The same holds when each network learns
from a different sequence. We conclude that the network

! indeed learns the statistical properties of the sequence, but
not its values. Clearly, in batch learning one expects that the
network would learn the rule when=N?, since the number

of free parameteréveights equals the number of examples.

FIG. 2. The correlation functions of the weightg of trained
networks withN=300. Cy,,y is averaged over the rowgsolumng
of the weight matrix[Eq. (11)]. The dashed lines correspond to
regression fits: a power-la, (1)~1~262%0016 and exponential
Ch(l)~exp(—al) a=—0.03+0.001. The opaque circles represent
C, in the case of training by slidinyy sites each cycle for a network
with N=200. The power-law regression fit i€, (1)~ |~ 60025

IIl. GENERATING COLORED SEQUENCES
BY A COLORED NETWORK

So far, we demonstrated the capability of the network to

50-100 samples. For comparison, we show the results di@pture statistical properties from the training sequence. Let
training with patterns obtained by sliding the winddisites ~ US now consider the inverse problem, i.e., that of construct-
each cycldnonoverlapping windows, Eq8)]; in this case, INg a network_ that is _capable_ of generating (_:orrelated se-
the sequence is much largér=10’. The data points are the duences. The information obtained from the trained networks
average values with relative error-bars that vary from 5% forn the preceding section regarding the structure of the weight
smalll to 40% (less than 20% for nonoverlapping windows Matrix, suggests that the significant correlation is present be-
of the data point fof~N/2, hence, we omit them to preserve tWeen the elements'of a column, i.e., vert|ca}l d|rect|pn.
the clarity of the figure. The learning rate usegk2 [Eq. Therefore, we would like to compare the correlation function
(6)], is not optimal; it is obvious that an optimization can Of Sequences generated by networks with the same vertical
reduce the fluctuations in the correlation function since itcorrelation function(power law, and various horizontal de-

affects the relative change in the weights. We note that th€&Y forms, i.e., power law with an increasing expongnt
fluctuations inspected in the sequendes,} generated by The weights are constructed as follows. Start by generating a

the trained networks are similar to those of the training patfandom matrix of normally distributed elements. Each col-
terns &, indicating a finite size effect. This has been con-Umn is treated as a 1D sequence and is “colored” following
firmed for several network sizes. the process described above for generating a 1D correlated

It is interesting to examine how the netwoflearning S€duence. After this stage, the rows are still uncorrelated. To

algorithm has embedded the relevant information associate@chieve  different power-law function for the rows, we treat
with the correlations. At the end of the training process de£ach row independently as a 1D sequence and follow the

scribed above, we measured the correlation function of th§@Me procedure as above, this time witbssibly a differ-
weight vectors(averaged over realizations @) in two ent exponent. This process genera}tes a we|gr_1t matrlx_ with
directions, horizontal(over rows and vertical (over col- pronounced correlations in the vertical and horizontal direc-

umns, as follows: tions only. We normalize the weighi{;_,;W{ ;)=N, such

that B=0O(1) (independent ofN). The value ofgB in the
dynamic equations, Eq&2),(3), is taken well above bifurca-
tion to increase the probability of nonperiodic attracidrg|

(we carefully avoid the periodic attractors in our measure-
mentg. In the analysis described below, each sample net-
work (coloredW) is initialized at random $°) and the cor-
relation function of the sequence generated is calculated at
long times.

Figure 3 depicts two cases for which the vertical correla-
Results are presented in Fig. 2 for a training sequence obeyion function of the weights decays polynomially with expo-
ing a power-law correlation function with exponept=0.6  nents y,=0.4 andy,=0.6. For each case, the horizontal
and a network of siz&=300. Clearly, the vertical correla- correlation function takes one of the following three values:
tions follow a rule similar to that of the sequendg,(l) Yo=Y, Yn=27%, Or uncorrelated. The results were obtained
~170625 while the horizontal correlations decay much for a network of sizeN= 2048 and averaged over 50 realiza-
faster, with an exponential fiC,(l)~exp(—=0.031). The tions of the weight matrix. Additional averaging is done by
case of training with patterns obtained from nonoverlappingstarting from several initial conditions for each matrix. It is
windows is presented for comparison by the opaque circlesapparent that the symmetric casg,= v, , gives rise to a
In this case, the vertical correlations are simil&,(l) relatively poor long-range correlations in the generated se-
~17961 however, there are no horizontal correlations. Wequence. The other two cases exhibit much longer-range cor-

N
Ch(l): < ijE:]_ Wi,jWi,j+| modN> y horizontal,
11
N

Cv(l): < ijE:]_ Wi,jWH—I modN,j> s vertical.
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whereZ is a normalization factorC,,(l,m) denotes the 2D
correlation function of the weights, ariZ(1) is the 1D func-
tion which is the quantity of interest. In the scenario de-
scribed aboveC,y is knowna priori (independent of time

o 7,=04 T since the weights are constructed. If we assume a power-law
102 || "1e=08 N vertical correlations folICyy and no horizontal correlations,
_ 4no cor . ) the correlation function of the sequencél), simply follows
& ' the vertical correlations of the weights, i.eC(l)
=73 .Cw(l,m)8m0=2Cw(1,0), supporting the above find-
10™ ings. We remark that this decomposition@j, into indepen-
dent vertical and horizontal functions is still a good approxi-
P L mation whenC,, is not a delta function, as long &, decays
Ui 2 " i much faster thai€C, , which enables us to neglect other cor-
. + o cor . relations. In this case E@15) can be formulated as an “ei-
10 100 1000 genvalue problem” of the matri,y. Few such cases have
l been solved numerically for which the assumption of decom-

FIG. 3. The correlation function of sequences generated by #0Sition was found consistent, see Ref2]. When this de-
constructed colored networky=2048. (a) y,=0.4, (b) y,=0.6. composition is no longer valid, we observe a breakdown of
vn is given in the figurg“no cor” stands for no horizontal corre- the long-range power-law behavior, see Fig. 3—the case
lations. The solid lines are the power-law regression fits with ex-=1y, .
ponents:(a) 0.47 (top line), 0.46 (middle), and 0.5(bottom); (b)

0.64 (top), 0.64 (middle), and 0.63(bottom)

_ _ _ _ IV. DISCUSSION
relations. Although we are not trying to determine the opti-
mal correlation function, it seems that weak correlations are | o paper we analyzed the capability of a neural net-
better than lack of horizontal correlations. This IS in agreey, oy model to learn the rule of a long-range correlated se-
ment with our findings regarding the trained networks, see .
Fig. 2 guence on the one hand, and a method for constructing a

To conclude, we propose a naive calculation WhiChnetwork that is able to generate such sequences on the other

should serve as a starting point to the analytical investigatiofa"d- We demonstrated that a simple online |earning algo-
of the model. The quantity of interest in our calculation is thethm can be used to extract the rule, provided that the se-

asymptotic correlation function quence is long enough. The fluctuations observed in the
training patterns are manifested in the generated sequences
C(H=Z(S'S", Diw, (12)  as well. The investigation of the weights that were obtained

during the learning process indicates that the vertical corre-

whereZ is a normalization factofC(0)=1]. The average is lations[C,, Eq.(11)] play the most important role in gen-
taken over the time and the realizations of the weights, €rating correlated sequences by the network. Employing this
expectingC(l) to be independent of the siteFor simplicity ~ finding, we were able to construct networksithout train-

we use the parallel updating rule, E8), hence, the station- ing) that are capable of generating sequences with a pre-

ary state of the correlation function may be given by defined power-law correlation function. Indeed, we found
that additional significant horizontal correlations in the con-
N N structed networks’ weights corrupt this property. These ob-
C(|)=Z< tam‘( BE S}Wi,j>tam‘( ,82 S}Wi+l,j) > servations were confirmed by a naive analytical treatment of
1= = LW the stationary correlation function.

(13 The question of the optimal learning ratey)( was not

treated although it seems to be an important parameter in the
convergence of the training process. Another question which
deserves further research regards the analytical derivation of
the correlation function. Taking into account the nonlinearity
N of the transfer function is necessary to close the naive calcu-
CU)*.E <S}St<>t(Wi,jWi+|,k>w- (14) lation sglf—consigtently, and to obtain the corrections to the
k=1 correlation function.

The approximation of Eq(13) consists of linearizing the
right-hand side and assumir®independent of the realiza-
tion of W, leading to

Next, we identify the averages as the correlation functions,
defined abpve, that d_epend on the distance only, and rewrite ACKNOWLEDGMENTS
Eq. (14) usingm=Kk—j in the form
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